近日,由中国科学院上海天文台葛健教授带领的国际团队创新了一种深度学习算法,并成功在开普勒卫星2017年释放的恒星测光数据中,发现了5颗直径小于地球、轨道周期短于1天的超短周期行星,其中4颗是迄今为止发现的距其主星最近、最小的行星,类似火星大小。
这是天文学家首次利用人工智能一次性完成搜寻疑似信号和识别真信号的任务,相关研究成果发表在国际天文学期刊《皇家天文学会月报》(MNRAS)上。
经过5年的努力和创新,研究团队成功开发了结合GPU相位折叠和卷积神经网络的深度学习的新算法(GPFC)。该算法比国际上流行的BLS法搜寻速度提高了约15倍,检测准确度和完备度各提高约7%,显著提高了凌星信号搜索速度、精度和完备度。该算法已成功应用在开普勒的数据集中,并识别出5颗新的超短周期行星,展现了新的算法在搜寻微弱凌星信号上的优势。
据了解,这些超短周期行星的存在,将为行星系统的早期演化、行星-行星相互作用以及恒星-行星相互作用的动力学,包括潮汐力和大气侵蚀研究提供重要线索,对行星形成理论研究有重大意义。该研究成果对在高精度光度观测数据中快速、高效搜寻凌星信号提供了新的研究方式,也充分展现了人工智能在天文海量数据中探寻微弱信号的广泛应用潜力和前景。
发评论,每天都得现金奖励!超多礼品等你来拿
登录 在评论区留言并审核通过后,即可获得现金奖励,奖励规则可见: 查看奖励规则