【研究颠覆】

清华大学上海交通大学联合发表的最新论文,对业界普遍认为"纯强化学习(RL)能提升大模型推理能力"的观点提出了挑战性反驳。研究发现,引入强化学习的模型在某些任务中的表现,反而逊色于未使用强化学习的原始模型。

学术打假!清华上交大研究颠覆认知:强化学习竟是大模型推理的"绊脚石"

【实验验证】

研究团队在数学、编码和视觉推理三大领域进行了系统性实验:

  • 数学任务:在GSM8K、MATH500等基准测试中,RL模型在低采样次数(k值)下准确率提升,但在高k值时问题覆盖率显著下降
  • 编码任务:RLVR训练模型在HumanEval+等测试中单样本pass@1分数提高,但在高采样数(k=128)时覆盖率下降
  • 视觉推理:Qwen-2.5-VL-7B模型在多模态任务中表现一致,RL未改变其基本问题解决策略

学术打假!清华上交大研究颠覆认知:强化学习竟是大模型推理的"绊脚石"

【学界争议】

研究结果引发学界激烈讨论:

  • 支持方认为RL提高了采样效率但限制了推理能力开发
  • 反对方指出可能是奖励结构缺陷而非RL本身问题
  • 中立观点建议结合蒸馏等其他方法增强推理

【本质思考】

研究团队提出关键区分:

  • 能力:模型解决问题的潜质与逻辑链条
  • 效率:在给定能力范围内得出答案的速度与稳定性

强化学习更像是"能力调控器"而非"能力创造器",它能让模型更擅长做已知的事,但难以开发新的推理路径。

【行业启示】

这项研究为过热的大模型RL训练热潮敲响警钟,提示行业应:

  1. 更关注基础模型的表示能力与知识组织
  2. 明确区分能力提升与效率优化的目标
  3. 建立更科学的推理能力评估体系